
UDDI Executive Overview:
Enabling Service-Oriented Architecture

October 2004

Organization for the Advancement of
Structured Information Standards

www.oasis-open.org



TABLE OF CONTENTS

EXECUTIVE SUMMARY 3.............................................................................................

THE SERVICE-ORIENTED IMPERATIVE 4................................................................

A STANDARDS-BASED WEB SERVICES REGISTRY 5.............................................
UDDI’s Role in Web Services Development
UDDI’s Role in Service-Oriented Infrastructure

THE EVOLUTION OF UDDI 7......................................................................................

HOW TO LEARN MORE 9............................................................................................

APPENDIX: UDDI USE CASE SCENARIOS 10..........................................................
Scenario 1: Private Test Registry
Scenario 2: Supporting Collaboration among Trading Partners

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 2



EXECUTIVE SUMMARY
The Universal Description, Discovery, and Integration () protocol is a key 
member of the group of interrelated standards that comprise the Web services stack. 
It defines a standard method for publishing and discovering the network-based 
software components of a service-oriented architecture ().

The  registry model is a central element of the service-oriented approach to 
software design. By enabling policy-based distribution and management of enterprise
Web services, a  registry delivers significant business value. It helps ensure that 
the convenience of developers, the requirements of enterprise architects, and the 
underlying business policies are not in opposition; in fact, it brings all of these needs 
into closer alignment by increasing software flexibility, reuse, and control.

 version 2.0 was approved in 2003. The 3.0 specification, to be finalized in late 
2004, represents another significant milestone in ’s evolution. It provides key 
capabilities for enterprise-level deployment and is a mature, well-supported standard. 
Its development is led by the  consortium of enterprise software vendors, users, 
government agencies, trade associations, and others.

This paper discusses the strategic rationale for  and analyzes its enabling role in 
the context of today’s enterprise Web services applications. In a companion white 
paper, we provide a concise, technical overview of the  standard and describe key
architectural changes in the recent Version 3 specification.

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 3



THE SERVICE-ORIENTED IMPERATIVE
The success of  organizations increasingly is measured by how well the systems 
they manage adapt to business change.  leaders must identify and plan for an 
architecture that provides not only scalability and “five nines” reliability, but also the 
ability to add new application components or to reorient and coordinate existing 
functions nimbly and rapidly.

Yet, most incumbent enterprise applications were not designed for flexibility and with
presumption of rapid change. The layering of several generations of computing 
technology has resulted in a complex infrastructure that is difficult to integrate and 
that often limits ’s options. It is no wonder that the financial and opportunity costs 
of integration-related projects are so high.

To address these challenges,  leaders increasingly recognize they must begin to 
think of  systems in terms of malleable services, not static assets. Although this 
service-oriented approach to enterprise software design represents a much-needed 
solution to the complexity and costs of many legacy practices, it also reflects several 
well-tested antecedents. Indeed, progressive enterprise software architects have long 
advocated methods in which applications are designed with modular, loosely coupled 
interfaces that hide the complexity of the underlying systems.

Yet, because of a lack of universal standards, many earlier approaches were not 
practical for solving broad-based enterprise software needs. This obstacle was 
particularly difficult in environments where all endpoint components could not be 
controlled fully, such as when business processes crossed organizational boundaries 
to include other corporate divisions or external trading partners.

It is in this context that Web services—a group of interrelated standards based upon 
the Extensible Markup Language () that define an open, loosely coupled, and 
simplified framework for integrating enterprise software applications—has been 
embraced by software vendors and customers alike. Indeed, over the past several 
years, the basic vocabulary of Web services has become familiar to every  executive. 
The model’s pragmatic business benefits—better integration and coordination among
systems, increased flexibility of  assets, and reduced development costs—are 
compelling.

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 4



A STANDARDS-BASED WEB SERVICES REGISTRY
 is an important enabling element of the service-oriented approach to software 
design. The standard specifies protocols for accessing a registry for Web services, 
methods for controlling access to the registry, and a mechanism for distributing or 
delegating records to other registries. In short, a  registry provides a standards-
based approach to locate a software service, to invoke that service, and to manage 
metadata about that service.

Rather than forcing applications to include hard-wired information about an external 
service’s application programming interface (),  registries provide this 
binding information dynamically, at run-time. The benefits of this approach 
immediately become clear should some details—even the location of the service—
change. Moreover, the  registry can provide different responses depending upon 
the security, transport, or quality of service as defined by arbitrary business rules (or, 
as they often are described in the  documentation, “taxonomies.”)

To further illustrate the concept of a  Web services registry, consider the 
important roles similar systems have played in other distributed application 
architectures. The Domain Name System () controls the Internet’s network 
addresses,  implemented its Trading and Naming services to help direct the 
flow of system calls, and Microsoft Windows uses an eponymous Windows Registry 
to manage the interactions of / components. Although  goes beyond 
the simple location transparency of most of these systems by providing an advanced 
framework for defining and querying services by taxonomy, the essential value of a 
 registry is similar: it provides a mechanism for managing an otherwise ad hoc, 
chaotic, and un-scalable series of interactions.

In fact, many adopters of Web services methods today are facing this very challenge. 
Many software developers within  organizations have begun to take advantage of a 
wide range of tools that simplify incorporating the  interfaces that are the basic 
building blocks of web service interactions. While development managers and 
enterprise software architects often encourage this “organic” growth of web service 
implementations, they also are acutely aware of their enterprises’ needs to provide an 
infrastructure that systematically addresses needs such as discovery, manageability, 
and security.

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 5



 and other standards that have begun to flesh out the Web services “stack” 
ensure that the convenience of developers, the requirements of enterprise architects, 
and the underlying business policies are not in opposition. In fact, a  registry 
can make the jobs of all these groups of users significantly easier.

UDDI’s Role in Web Services Development
Benefits such as standards-based interoperability that are provided to programmers 
by Web services are clear. Nonetheless, when development teams begin to build Web 
services interfaces into their applications, they soon face issues all too familiar to 
developers who work in any programming environment: code reuse, ongoing 
maintenance, and documentation. Moreover, as the number of Web services created 
within an IT organization grows, the need to manage these services can increase 
exponentially.

For development teams, registries based upon  help answer needs such as:

■ How can development managers systematically organize and manage Web 
services across multiple systems and development teams?

■ How can developers systematically manage the process of moving services 
through each phase of development: from coding to testing to public deployment?

■ How can programmers document interface specifications, message transports, 
and authentication mechanisms with other developer groups? As the services 
change over time, how can external applications accommodate the changes?

When developing and deploying Web services applications,  registries help drive
better code reuse and developer productivity. A  registry provides an 
interoperable, standards-based approach for systematically documenting and 
publishing Web services, regardless of development environment or platform. It can 
help developers—even across functional groups—find a shared service and use that 
service within their own applications.

UDDI’s Role in Service-Oriented Infrastructure
Issues of services development point to the larger question of how to design an  
infrastructure that supports Web services development efforts. Although questions 

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 6



such as how best to conceive shared services, to design identity management and 
authentication mechanisms, and so on are beyond the scope of the  standard 
(and this paper),  registries represent an important element of this overall 
question. In a service-oriented environment, enterprise software architects must 
consider questions such as:

■ How can critical applications be insulated from changes—or failures—in back-
end shared services?

■ How can an organization share information about services in a controlled way 
that reflects its own business rules and policies?

Compounding these issues, a service-oriented approach implies that these questions 
must be addressed as a routine aspect of run-time operations, not hard-coded into the
applications themselves.

Registries based upon  provide  administrators a formal layer of indirection 
necessary for service-oriented application development and management. By 
providing a sort of firewall between a service and the applications that call it, system 
administrators more easily can accommodate changes in the life cycle of specific 
components—such as for version updates, for policy considerations, or even for 
service termination.

In addition to the fundamental benefits of run-time binding provided by the registry 
in a service-oriented architecture, administrators often require control of the 
publication and distribution of information about deployed Web services, so that 
software deployment follows business policy. To facilitate these operational and 
governance needs, the current version of  adds support for features such as 
client authentication and publish/subscribe for peer registries.

THE EVOLUTION OF UDDI
When  first was conceived, much of the attention was focused on the “ 
Business Registry” (), a public implementation of the  standard that 
represents a directory of publicly available e-commerce services. Returning to an 
analogy used earlier in this document, one could consider the role of this public 
registry as similar to the root node of the  database. Although the comparison is 

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 7



imperfect, both represent successful examples of distributed registry infrastructure.

The  serves as a highly visible reference implementation of the standard. As such,
it provides an ideal environment for validating and proposing changes to the 
specification, as well as for testing applications and tools that make use of . 
Although the  remains an important part of the  project, it represents only 
one aspect of the overall effort. Just as the overwhelming majority of  activity 
occurs within the confines of a company’s own network, so too do most  
implementations support a business’ internal Web services infrastructure.

This understanding of how Web services are most often used today is reflected as the 
 specification has evolved. Its current implementation recognizes the need for 
federated control in real-world operational environments and further integrates the 
standard with other elements of service-oriented infrastructure. Highlights of the 
standard’s progress are shown in the table below.

Figure 1: History of the UDDI Specification

UDDI VERSION YEAR RELEASED KEY OBJECTIVE

1.0 2000 Create foundation for registry of Internet-
based business services

2.0 2003
Align specification with emerging Web

services standards and provide support
for flexible, external taxonomies

3.0 2004
Support secure interaction of private and
public implementations as key element

of service-oriented infrastructure

 version 2.0 was approved by the  standards group in 2003. The 3.0 
specification, to be finalized in late 2004, represents another significant milestone in 
’s evolution. It provides key capabilities for enterprise-level deployment and is a 
mature, well-supported standard. In fact, a prerequisite of its pending approval as an 
 standard is the existence of several deployed commercial implementations.

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 8



HOW TO LEARN MORE
The  specification is managed by , a member-led, international, non-profit 
standards consortium that concentrates on structured information and e-business 
standards. The organization’s members include enterprise  users, vendors, 
academics, governments, trade associations, and individuals. In addition to , 
 is known best for shepherding Web services-related protocols such as , -
Security, , and others.

To learn more about  and , please visit www.uddi.org. In addition to the 
specification itself, the  web site provides detailed technical notes, best practices,
case studies, and information about how to contribute to ’s ongoing 
development. The site also provides links to several commercial and open-source 
implementations of  registries that are available in the marketplace. Information
about  is available on www.oasis-open.org, and the work of the   
Specification Technical Committee can be found at
www.oasis-open.org/committees/uddi-spec. 

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 9



APPENDIX: UDDI USE CASE SCENARIOS
Many practical applications of general Web services and specific  concepts exist, 
and it is not our objective to document them exhaustively here. Instead, we outline 
two scenarios that are representative of the registry interaction features enabled by 
Version 3 of the  specification.

Scenario 1: Private Test Registry
Business Scenario

For the past year, the  organization of a major corporation had begun to explore the 
possibilities of Web services approaches to application development and integration. 
Using the technology first in pilot projects and other piecemeal efforts, the  team 
had skirted around the question of how to deploy and manage its Web services 
applications. As it begins to plan for using Web services in the company’s mission-
critical business processes and to create services that will be available to the rest of 
the organization, the  team realizes that it will require a more controlled and 
systematic approach.

Overview of Issues

■ Need to test real-world conditions. As software is developed, testing and debugging 
must occur under conditions as close to real-world production environment as 
possible and, in fact, incorporate several external, functioning services in the test 
scenarios. Additionally, it is desirable that as few modifications as possible be 
made to the component software to switch from “test” to “production” mode.

■ Clear separation between production and test systems. At the same time, development 
versions of software must not interfere with actual production systems. Because 
services can be highly distributed and are loosely coupled, maintaining this 
distinction is paramount to ensure that dependencies are managed systematically.

■ Requirement to support distributed developer base. Developers using the system may 
be based world-wide and, in fact, use different platforms and technologies from 
group to group. As a result, interoperability and support for a variety of network 
connections is an important functional requirement.

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 10



Description of Solution

The  organization develops a test environment that utilizes a “one-way peering” 
model of registry interaction to create two overlapping domains for services. Those in
the “private” domain can interact with the outside world, but not the other way 
around. When development versions of software have been fully tested and certified, 
they are promoted to the production sphere, using the expanded publishing features 
of the  Version 3 specification.

Figure 2: Illustration of Private Test Registry

Comment: As services are certified and promoted to the production environment, the associated 
entities are published from the development registry to the production registry using new features

enabled in Version 3 of the  specification.

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 11



Scenario 2: Supporting Collaboration among Trading Partners
Business Scenario

A large manufacturer has built a business based on providing “specialty” and custom 
fabricated plastics components on a spot and contract basis. Its role in the middle of 
the supply chain—between commodity suppliers like refiners and the plants of 
manufacturers like consumer packaged goods concerns—requires that the company 
manage relationships with multiple business partners and even act as an 
intermediary between its suppliers and customers. In order to increase its value to 
partners by providing visibility into supply and demand, as well as reduce its own 
costs of managing inventory and logistics, the company has embarked upon a 
program of automating a largely manual process of communicating with its suppliers
using Web services-based interfaces to the key applications.

Overview of Issues

■ Interoperability. The sources of data for the new system range from internal 
systems like  applications to third-party services like inventory and logistics 
tracking. Because all of these applications are established, long-running systems, 
standardizing on one particular platform is not an option.

■ Decentralization and collaboration. The company’s business relationships are 
highly customized, and as a result, the integration infrastructure must be 
significantly decentralized. In fact, many of the business processes in question 
cannot be controlled by any single organization but, rather, require the 
cooperation of all parties involved.

■ Security. Many of the systems in question are highly strategic, and information 
about these systems—even where they exist—may be highly sensitive and should 
not be shared with other companies in the network.

Description of Solution

As part of an overall Web services solution, the company implements a service broker
using a  registry as a central element. By deploying it within the boundaries of a 
“” trusted environment, the company can both isolate interactions from its 
internal network, as well as limit the exposure of the registry to the outside world. In 
addition, by establishing subscription-based relationships with partners’ registries in 
the trading network, the company can ensure that information is fully, but safely, 

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 12



distributed among trading partners. The registry also implements the  Digital 
Signatures support in Version 3 of the  specification to ensure the integrity and 
authenticity of exchanged data.

Figure 3: Illustration of Trading Partner Collaboration

Comment:  Partners use  Version 3’s new subscription features to monitor the company’s root
registry. They gain visibility to only a desired subset of all of the services available, as defined in the

company’s business policies.

UDDI Executive Overview
Enabling Service-Oriented Architecture

Page 13


